

Corporate Overview

Building the Next Immunology Leader

Last Updated: October 2023

Forward Looking Statements Disclaimer

This communication includes "forward-looking statements" within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. Words such as "expect," "estimate," "project," "budget," "forecast," "anticipate," "intend," "plan," "may," "will," "could," "should," "believe," "predict," "potential," "continue," "strategy," "future," "opportunity," "would," "seem," "seek," "outlook" and similar expressions are intended to identify such forward-looking statements. Forward-looking statements are predictions, projections and other statements about future events that are based on current expectations and assumptions and, as a result, are subject to risks and uncertainties that could cause the actual results to differ materially from the expected results. These statements are based on various assumptions, whether or not identified in this communication. These forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by an investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability.

Actual events and circumstances are difficult or impossible to predict and will differ from assumptions. You should carefully consider the risks and uncertainties described in the "Risk Factors" sections of Zura Bio's recent filings with the SEC. These filings would identify and address other important risks and uncertainties that could cause actual events and results to differ materially from those contained in the forward-looking statements. Many of these factors are outside Zura Bio's control and are difficult to predict. Many factors could cause actual future events to differ from the forward-looking statements in this communication, including but not limited to: (1) the outcome of any legal proceedings that may be instituted against Zura Bio; (2) volatility in the price of Zura Bio's securities; (3) the ability of Zura Bio to successfully conduct research and development activities, grow and manage growth profitably, maintain relationships with customers and suppliers, and retain key employees; (4) costs related to financing transactions and the ongoing costs relating to operating as a public company; (5) changes in the applicable laws or regulations; (6) the possibility that Zura Bio may be adversely affected by other economic, business, and/or competitive factors; (7) the risk of downturns and a changing regulatory landscape in the highly competitive industry in which Zura Bio operates; (8) the impact of the global COVID-19 pandemic; (9) the potential inability of Zura Bio to raise additional capital needed to pursue its business objectives or to achieve efficiencies regarding other costs; (10) the enforceability of Zura Bio's intellectual property, including its patents, and the potential infringement on the intellectual property rights of others, cyber security risks or potential breaches of data security; and (11) other risks and uncertainties described in the Registration Statement and such other documents filed by Zura Bio form time to time with the SEC. These risks and uncertainties may be amplifie

Zura Bio does not undertake or accept any obligation to publicly provide revisions or updates to any forward-looking statements, whether as a result of new information, future developments or otherwise, or should circumstances change, except as otherwise required by securities and other applicable laws.

zurabio

Experienced management team with proven ability to successfully execute and build a leading market position

Nasdaq: ZURA

			Board of	Directors			
Amit Munshi	Garry Neil, M.D.	Jennifer Jarrett	Neil Graham, M.D.	Parvinder Thiara	Sandeep Kulkarni, M.D.	Someit Sidhu, M.D.	Steve Schoch
Chairman	Director	Director	Director	Director	Director	Director	Director

©2023 Zura Bio Ltd. 3

Sizeable Total Addressable Market Exists Across Number of Validated Mechanisms

Nasdaq: ZURA

Clinical stage pipeline targeting key immunology pathways via stage pipeline targeting key immunology pathways

Nasdaq: ZURA

ZURA BIO PROGRAM								
		INDICATION	Preclinical Phase 1 Phase 2 Phase 3		Phase 3	EXPECTED KEY MILESTONES		
							Transition asset from Eli-Lilly	
		systemic sclerosis					Open IND rheumatology division	
70 100	tibulizumab						Phase 2 study initiation, to enable seamless transition to Ph3	2H-24'
ZB-106	Anti-BAFF x IL-17							
							Transition asset from Eli-Lilly	
		hidradenitis suppurativa					Open IND dermatology division	2H-24'
							Phase 2 initiation	2H-24'
							Transition asset from Pfizer	
70 100							Open IND dermatology division	
ZB-168	ANTI-IL-7R	alopecia areata					Completed technology transfer to CDMO	
							Phase 2 initiation*	1H-24'
ZB-880	torudokimab Anti-IL-33	allergy / respiratory					Conduct all necessary CMC and regulatory prepare the asset for Phase 2 readiness**	tasks to

(*) pending expected phase 2 external catalysts in atopic dermatitis (AD) and ulcerative colitis (UC)

(**) pending expected phase 2 and 3 external catalysts in asthma and chronic obstructive pulmonary disease (COPD)

Sources: ClinicalTrial.gov, Company Press Release

Abbreviations: AA, alopecia areata; AD, atopic dermatitis; COPD, chronic obstructive pulmonary disease; HS, hidradenitis suppurativa, PsA, psoriatic arthritis; SLE, systemic lupus erythematosus; UC, ulcerative colitis

Our Strategic Approach

•

suffering from severe and intricate autoimmune diseases. These patients currently find their needs unmet by the conventional "single" pathway approach.

Paradigm shifting not incrementalism

Nasdaq: ZURA

CURRENT APPROACHES ARE INCREMENTAL

PATIENTS NEED A PARADIGM SHIFT

Systemic sclerosis

- Skin, lung, kidney and other organs are affected by SSc
- Two drugs approved for severe lung complications (SSc-ILD)
- No treatment addresses the disease across multiple organ systems, currently, only lung complications are being addressed

Hidradenitis suppurativa

- IL-17 treatments seem to have reached their efficacy ceiling
- Overall disease burden still exists
- Persistent inflammatory burden remains with a B-cell driven component

Alopecia areata

- Efficacy bar is set at the low or mid dose of JAK inhibitors (JAKi)
- The JAKi class carries black box warnings limiting broad adoption for AA
- Efficacious, safer and better tolerated treatments are needed

Broader efficacy

Works in more patients not just certain subsets

Deeper efficacy

Raising the efficacy bar for all patients

......

Тох

Tox

Efficacy

Patient tolerability and safety

Pioneering Dual Pathway Biology

Nasdaq: ZURA

ZB-106 is an IgG-scFv engineered by the fusion of ixekizumab (TALTZ®) and tabalumab ^{1, 2, 3}

©2023 Zura Bio Ltd. 9

Potent molecules with highly validated pathways

Nasdaq: ZURA

Sources: ¹Liu, Ling, et al. Journal of Inflammation Research, doi:10.2147/jir.s100940.² IB and CSR, ³ Manetta, Joseph et al. Journal of Inflammation Research, doi:10.2147/jir.s67751. ⁴ Benschop, Robert J., et al. mAbs, doi:10.1080/19420862.2019.1624463. ⁵ Zura Internal Data. ⁶ Herold, Kevan C., et al. JCI Insight, doi:10.1172/jci.insight.126054. ⁷ Numazaki, Mako, et al. Journal of Pharmacology and Experimental Therapeutics, doi:10.1124/jpet.121.000686. ⁸BMS patent <u>https://patents.google.com/patent/WO2020154293A1/en</u>

©2023 Zura Bio Ltd. **10**

ZB-106 is Clinically De-Risked Through Ph1b

Nasdaq: ZURA

78 Participants Dosed Across Three Ph1/1b studies

57 participants with single dose; 21 participants with multiple dose up to 12 weeks

PHARMACOKINETICS	PHARMACODYNAMICS	SAFETY and ADA
 t_{1/2} is 26.9 days Bioavailability after SC doses was 62.9% At doses tested there is evidence of maximum target engagement with clinical safety supporting 6-fold "window" between max target engagement and max human dose tested 	 In Ph1b healthy volunteer study in RA participants there was multiple impacts on PD markers: Decrease in CD20+ B-cells with higher doses generally associated with larger changes from baseline Decrease in hs-CRP AUC was associated with higher ZB-106 AUCs 	 SAD Studies: No deaths or SAEs MAD study: No deaths, single related SAE of neutropenia with resolution Most frequent TEAE: Headache, transient neutropenia, nausea, diarrhea No TEAE of infection at target doses In the MAD study, one participant had TE-ADAs detected at a low titer
Established dosing regimen	Demonstrated PD in participants in Ph1b	Safety / ADA profile in line with TALTZ®

ZB-106 is a highly validated molecule that enables the opportunity to deliver on the promise of both IL-17 and BAFF inhibition in autoimmune disease

Combining IL-17 and BAFF Neutralization in a Murine Model of Arthritis Enables Improvement in Therapeutic Benefit

- Rheumatoid arthritis is a prototypic autoimmune disease where individually targeting IL-17-mediated inflammation or depleting B cells has been clinically validated
- The collagen-induced arthritis (CIA) murine model is similarly characterized by increased IL-17 production and B cells that drive disease pathogenesis
- Surrogate antibodies were used to evaluate whether neutralization of IL-17 and BAFF was superior to targeting individual pathways
- Mice were injected with anti-IL-17A and/or anti-BAFF on days 22, 29, and 36
- Blockade of both IL-17A and BAFF was associated with reduced:
 - Disease severity
 - Inflammation in the hind paw (histology score)
 - Anti-collagen antibodies

Potential First-in-Class, Dual Antagonist Combining tabalumab and TALTZ®

tibulizumab Anti-BAFF x IL-17

systemic sclerosis (SSc)

Systemic sclerosis is a rare & life-threatening disease with no approved therapy

~200,000

people with SSc in US, EU and Japan¹

Zero

SSc-specific* drugs approved

40-60%

mortality in 10 years²

annual potential market opportunity

2B+

Rare and life-threatening autoimmune disease characterized by tissue inflammation and fibrosis

01 One of the deadliest of the rheumatic diseases

Associated with severe disability, fibrosis-related organ failure, and premature death

02

₩ \$Ξ

- Up to 50% of patients develop interstitial lung disease (ILD), the most common cause of mortality in these patients
- Severe impact on patients' lives with a variable constellation of symptoms, including Raynaud's phenomenon, arthritis, painful ulcers on fingers and toes, thickening and scarring of the skin, shortness of breath, hypertension, and severe fatigue

High unmet medical need with no approved therapy

- 01 Standard of care relies upon off label use of immunosuppressive agents
- O2 Symptom management with pain relief through nonsteroidal, antiinflammatory medications or corticosteroids

Two disease-modifying drugs are approved for severe lung complications of

03 the disease (SSc-ILD), but no effective treatment exists that combats the disease across organ systems.

Sources: Medscape, BMJ best practice ¹Health Advanced, LLC; Lenabasum Commercial Market Assessment. ² Tyndall et al, 2010 ³ Bergamasco, A. et al., Clin Epidemiol. 2019 Apr 18;11:257-273 ⁴ Zura Bio internal analysis and benchmarking, ⁵ Internal assumption based on demand research and rare disease analogues

IL-17 and BAFF Inhibition Have Shown Efficacy in Placebo Controlled Trials in systemic sclerosis (SSc)

ZB-106 | SSc

ZB-106 has the potential to treat the Th17 and BAFF components of SSc

Sources: ¹Fukasawa, T., et al. Annals of the Rheumatic Diseases, doi:10.1136/annrheumdis-2022-eular.2519. ² Yang, Xiaoqin, et al. Arthritis Research Therapy, doi:10.1186/ar4430. ³ Ebata, Satoshi, et al. The Lancet Rheumatology, doi:10.1016/s2665-9913(21)00107-7. ⁴ Sato, Shinichi, et al. Molecular Immunology, doi:10.1016/j.molimm.2004.06.025. ⁵ Senécal, Jean-Luc, et al. Journal of Scleroderma and Related Disorders, doi:10.1177/2397198319870667. ⁶ Sato, Shinichi, et al. The Journal of Immunology, doi:10.4049/jimmunol.165.11.6635. ⁷ Gordon, Jessica K., et al. Arthritis Rheumatology, doi:10.1002/art.40358.

©2023 Zura Bio Ltd. 15

IL-17 and BAFF Inhibition Have Shown Efficacy in Placebo Controlled Trials in systemic sclerosis (SSc)

ZB-106

| SSc

Brodalumab Belimumab Rituximab CD20 B-cell depleter IL-17 receptor antagonist **BAFF** antagonist Multiple Studies demonstrated effectiveness of Achieved primary endpoint of treatment difference 52-week, investigator initiated, single center, double rituximab in SSc (mainly open label and of least square mean: -21.2 [95% CI -23.9, 18.5]; blind, placebo-controlled pilot study in 20 observational) P<0.0001), and demonstrated a rapid, sustained participants with dcSSC on MMF reduction in mRSS over 52 weeks¹ The most compelling data comes from the DESIRES No significant difference of AEs in active and placebo double blind – placebo-controlled trial in 56 pts with Demonstrated therapeutic effects on arms SSc lung/respiratory functions, digital ulcers, the Both treatment groups experienced improvements symptoms of gastroesophageal reflux disease, and Primary endpoint: mRSS change after 24 weeks of in mRSS favoring belimumab (-10 vs -3; p=NS) QOL without noteworthy safety concerns treatment All secondary endpoints favored belimumab with Rituximab -6.30 points vs. PBO +2.14 points (p <</p> statistical significance in 2 endpoints: SHAQ DI and 0.0001) VAS Raynaud's phenomenon 48 / 56 participants had SSc-ILD 2.96% FVC Orphan Drug Designation granted improvement at 24 weeks vs. PBO (p=0.04) Ph2/3 RCT has been initiated for SSc-ILD THE LANCET heumatology BM Journals

Sources: ¹Fukasawa, T., et al. Annals of the Rheumatic Diseases, doi:10.1136/annrheumdis-2022-eular.2519. ² Gordon, Jessica K., et al. Arthritis Rheumatology, doi:10.1002/art.40358. ³ Ebata, Satoshi, et al. The Lancet Rheumatology, doi:10.1016/s2665-9913(21)00107-7.

©2023 Zura Bio Ltd. 16

urabio

ZB-106 | SSc

Potential First-in-Class, Dual Antagonist Combining tabalumab and TALTZ®

tibulizumab Anti-BAFF x IL-17

hidradenitis suppurativa (HS)

Overview of hidradenitis suppurativa (HS)

DISEASE OVERVIEW

- Hidradenitis suppurativa is an inflammatory follicular skin disease
- Skin lesions develop in axillae, in the groin, and under the breasts, are formed as a result of inflammation & infection of sweat glands and are characterized by:
 - Recurrent boil-like nodules and abscesses that culminate in pus-like discharge
 - Difficult-to-heal open wounds (sinuses) and scarring
 - Increased Th1/Th17 and B cell mediated inflammation 1-3
 - Disproportionately affects women between adolescent age to 55 years of age ^{4, 5}

CLINICAL OPPORTUNITY

Estimated

~300K people

living with Hidradenitis suppurativa in the U.S.

(1-2% global prevalence)

Average of

7 years

to diagnose globally

High unmet need

>50% patients still left inadequately treated

According to HiSCR 75 data

CURRENT TREATMENTS ONLY AIM TO MANAGE SYMPTOMS AND INCLUDE PALLIATIVE CARE SUCH AS OTC EYEDROPS, TOPICAL CYCLOSPORINE AND OFF-LABEL STEROIDS OR IMMUNOSUPPRESSANTS TO MANAGE SYSTEMIC SYMPTOMS

Sources: ¹Moran, Barry, et al. Journal of Investigative Dermatology, doi:10.1016/j.jid.2017.05.033. ² Banerjee, Anirban, et al. Immunological Investigations, doi:10.1080/08820139.2016.1230867. ³ Sabat, Robert, et al. Journal of Allergy and Clinical Immunology, doi:10.1016/j.jiaci.2022.10.034. ⁴ Garg, Amit, et al. JAMA Dermatology, doi:10.1001/jamadermatol.2017.0201. ⁵ Ingram, John R. British Journal of Dermatology, doi:10.1111/bjd.19435.

ZB-106 | HS

urabio

Multiple Ph3 Studies Show IL-17 is Clinically Validated Pathway to Treat HS

ZB-106 | HS

Phase 2 data show IL-17 efficacy ceiling may have been reached

Fostamatinib data provide evidence of B-Cell importance

RECENT HS DATA

Com As	npany sset	abbvie	U NOVARTIS	bimzelx	bimzelx	Moc sonelokimab	nLake sonelokimab	ACELY izokibep	RIN 🛆 izokibep	rigel . fostamatinib
Mech	nanism	TNF-α	IL-17 A	IL-17 A/F	IL-17 A/F	IL-17 A/F	IL-17 A/F	IL-17 A/A	IL-17 A/A	SYK inhibitor
Admin	istration	SC	SC/IV	SC	SC	SC	SC	SC	SC	PO
Pł	nase	PIONEER I & II Phase 3	SUNSHINE & SUNRISE Phase 3	BE HEARD I & II Phase 3	Phase 2	Phase 2 Part A	Phase 2 Part B	Phase 2b Part A	Phase 2b Part B	Phase 2
Do	osing	40mg QW for 12W	30mg Q2W for 16W	320mg Q2W for 16W	320mg Q2W for 12W	120mg Q2W for 12W	120mg Q2W for 24W	160mg QW for 12W	160 mg Q2W or QW for 12W	150 mg BID for 12W
Total I	Patients	n = 633	n = 360	est. n = 579	n = 88	n = 234	n = 234	n = 30	n = 175	n = 20
Efficacy	Non-Placebo Adjusted	42% - 59%	42% - 45%	48% - 52%	63%	66%	76%	71%	42% - 46%	85%
(HiSCR50)	Placebo Adjusted	16% - 31%	11% +	19% - 20%	35%	38%	48%	N/A	1% - 5%	N/A
Efficacy	Non-Placebo Adjusted	N/A	N/A	33 - 36%	50%	43%	57%	57%	34% - 39%	70%
(HiSCR75)	Placebo Adjusted	N/A	N/A	15% - 20%	29%	29%	N/A	N/A	5% - 10%	N/A
Safety / Folerability	Most Common AEs	Headache 9% - 13%	Headache 9% - 12%	Hidradenitis 7% - 9%	Infections 44%	Nasopharyngitis 16%	Nasopharyngitis 12%	Injection site reactions	TBD	Nausea 30%
	Candidiasis	0% ¹	0% - 3% ¹	4% - 7%	9%	10.5%	>10%	0% ²	TBD	0%

Sources: Company Presentations, Publications and Research.

¹Represents data from psoriasis trial. ²Represents safety data from psoriatic arthritis trial.

B Cell Signaling Potentiates HS Disease

Clinical Benefit of Targeting B Cells

- Modulating B cell function using fostamatinib (SYK inhibition) provided therapeutic benefit in HS⁶
- B cell depletion with rituximab provided therapeutic benefit ⁵
- 4/5 cases report complete remission of HS lesions ⁵

Sources: ¹Van der Zee, H.H., et al. British Journal of Dermatology, doi:10.1111/j.1365-2133.2011.10698.x.² Rumberger, Beth E., et al. Inflammation Research, doi:10.1007/s00011-020-01381-7. ³ Sabat, Robert, et al. Journal of Allergy and Clinical Immunology, doi:10.1016/j.jaci.2022.10.034. ⁴ Gudjonsson, Johann E., et al. JCI Insight, doi:10.11172/jci.insight.139930. ⁶ Jepsen, Rebecca, et al. Journal of the American Academy of Dermatology, doi:10.1016/j.jaad.2023.05.076.

CD20+ B and CD138+ Plasma Cells are

increased in chronic HS lesions¹

Pathogenic Role for B Cells

and Plasma Cells

 B cell depletion with rituximab provided therapeutic benefit with 4 out of 5 cases reporting complete remission of HS lesions ⁵

©2023 Zura Bio Ltd. **21**

d es

BAFF Drives B Cell Activation

and Inflammation

Increased BAFF expression in HS lesions

explants reduced the expression of B &

BAFF is essential for

B cell activation

BAFF

Neutralization of BAFF in HS lesional

plasma cell gene signatures²

and tunnels²⁻⁴

BAFF gene expression in HS

P=0.001 P=0.000 P=0.000 P=0.000

P=0.010

Dermal Tunnels: Role in HS Pathogenesis

ZB-106 | HS

Recent literature highlights the role of dermal tunnels in the pathogenesis of HS 1,2

The presence of dermal tunnels increased the amount of time needed to achieve HiSCR50 with adalimumab $^{\rm 3}$

One significant drawback of the HiSCR is the lack of a dynamic measurement of draining tunnel; therefore, not fully capturing the anti-inflammatory properties of a therapeutic

Dermal tunnels in HS are characterized by increased numbers of neutrophils and B cells that produce high levels of BAFF ^{2,4}

The International Hidradenitis Suppurativa Severity Score System (IHS4) was developed to assess inflammatory nodules (1 point), abscesses (2 points) and draining tunnels (4 points)

Treatment with fostamatinib (SYK Inhibitor) significantly reduced IHS4 scores and draining tunnel counts ⁵

A Potential Best-in-Class Anti-IL-7R Inhibiting Both IL-7 and TSLP Pathways

Anti-IL-7R

alopecia areata (AA)

Cytokine Signaling via IL-7 and TSLP Pathways

🎓 🛛 zurabio

ZB-168 | AA

IL-7R α is a key receptor in immune regulation, central to the signaling of cytokines IL-7 and TSLP

Positioning ZB-168 for diverse immune-related and autoimmune conditions

Potential Therapeutic Franchises for ZB-168

ZB-168 | AA

Redefining Treatment Standards for alopecia areata

ZB-168 | AA

zurabio

Sources: ¹ Williams, Jason H., et al. The AAPS Journal, doi:10.1208/s12248-019-0401-3. ² Herold, Kevan C., et al. JCI Insight, doi:10.1172/jci.insight.126054.

ZB-168 is Potentially Best-in-Class Asset at TSLP Inhibition

ZB-168 | AA

 ZB-168 is nearly 10-fold more potent than AZN / AMGN's tezepelumab, and tezepelumab does not inhibit IL-7 signaling

ZB-168 is **>300-fold** more potent than Q32 Bio / Horizon's bempikibart (formerly ADX-914) in TSLPinduced markers, but similar in IL-7-induced pSTAT5 ⁴

In 2023, Zura Bio and Benaroya Research Institute (BRI) initiated a sponsored research collaboration to delve deeper into the role of IL-7R α in TSLP and IL-7 signaling pathways.

This collaboration aims to enhance understanding of the roles IL-7 and TSLP play in immunological diseases and the potential benefit from targeting IL-7Ra, which is required for the signaling of both pathways.

Sources: ¹Zura Internal Data. ²Herold, Kevan C., et al. JCI Insight, doi:10.1172/jci.insight.126054. ³Numazaki, Mako, et al. Journal of Pharmacology and Experimental Therapeutics, doi:10.1124/jpet.121.000686. ⁴Yamniuk, Aaron P., et al. Antibodies against II-7r Alpha Subunit and Uses Thereof. 18 May 2021.

Current treatments involving JAK inhibitors

💎 zurabio

ZB-168 | AA

Concerns with JAK Inhibitors

Broad Action

JAK inhibitors block multiple pathways by targeting JAK1 and JAK2, which are involved in numerous cytokine signaling processes. This broad action will/can inadvertently suppress beneficial immune responses.

Black Box Warnings

1. Infections

2

JAK inhibitors can/will increase the risk of serious infections due to their immunosuppressive nature.

2 ↓ ↓ ↓ ↓ ↓

2. Malignancy

Their use has been linked to an elevated risk of certain cancers

ビ

3. Thrombosis

Patients on JAK inhibitors face a heightened risk of blood clots.

4. Increased Mortality

Particularly in older patients with cardiovascular risk factors, there's an associated higher risk of death.

Targeting Anti-IL-33, an Alarmin with Potential in Multiple Indications

torudokimab Anti-IL-33

allergy / respiratory Indications

About ZB-880 (torudokimab) L33 Well tolerated in Ph1 and Ph2 trials conducted by Eli Lilly² IL-33 implicated in driving Th2 01 02 biology through ST2 and Th1/Th17 through alternative signaling¹ 103 participants with 141 healthy volunteers in Ph1 moderate to severe atopic 11.33 study dermatitis in Ph2 The target engagement evaluation 03 Analyses confirmed key Potential utility in diseases suggested binding to IL-33 and biomarker reductions (IL-13, driven by epithelial treatment emergent ADA had no periostin and CCL17/TARC) inflammation¹ apparent impact on PK or target and no ADA impact³ engagement **Mechanism of Action** 0 Inhibition of IL-33 blocks both ST2 and RAGE signaling⁴ JAK Initial Focus on Respiratory, Dermatologic, STAT5 **Gastrointestinal and Orphan Autoimmune Indications** p38 MAP STAT5 Potential for 1st-in-class opportunities **02** Validated pathways in COPD4 and asthma⁵

Sources: 1. Cohen et al. 2015 Nature, 2. https://clinicaltrials.gov/ct2/show/NCT03913260; https://clinicaltrials.gov/ct2/show/NCT03343587; https://clinicaltrials.gov/ct2/show/NCT03831191, Section 6.1, DSUR for period 23-Sep-2019 to 22-Sep-2020, 3. doi.org/10.1111/bjd.21631 4. Okragly et al Journal of Inflammation Research 2021:14 3823–3835, 5.. doi:10.1056/NEJMoa2024257

©2023 Zura Bio Ltd. 32

IL-33 is a member of the IL-1 cytokine family that is constitutively expressed in structural and lining cells including fibroblasts, endothelial, and epithelial cells of skin, gastrointestinal tract, and lungs¹

Polymorphisms in IL-33 and ST2 are associated with increased eosinophil production as well as respiratory diseases such as COPD and severe asthma

Pre-clinical data demonstrates superior activity of torudokimab compared with etokimab suggesting the potential for best-in-class activity⁵ IL-33 is released from the epithelium by disease exacerbating environmental factors and is an important amplifier of innate inflammation during exacerbations²

IL-33 inhibition clinically validated in severe asthma, COPD3, and subsets of other epithelial disorders⁴

Emerging biology suggests expanding opportunity for IL-33 in fibrotic and autoimmune conditions⁶

Sources: 1. Chan, 2019. Frontiers Immunol, 2. doi.org/10.1016/j.cyto.2022.155891, 3. https://doi.org/10.1038/ng.323 and doi:10.1016/j.jaci.2020.04.051 , 4. .:https://doi.org/10.1016/S2213-2600(22)00005-4; doi:10.1056/NEJMoa2024257 and doi: 10.1126/scitransImed.aax2945 , 5. Sci Trans Med., Zura Bio Internal data, 6. doi: 10.1111/imm.12174; https://doi.org/10.3389/fphys.2021.781012 and https://doi.org/10.3389/fmed.2021.739489

ZB-880 Has Potential for "Best-in-Class" Activity

Torudokimab was 2.9 and 5.5-fold more potent than etokimab and itepekimab, respectively, inhibiting IL-33-induced GM-CSF production by human mast cells

Antibody	k _{on} (M⁻¹s⁻¹)	k _{off} (s⁻¹)	k _d (pM)	Torudokimab Potency
torudokimab (LY3375880)	1.7 × 10 ⁶	6.7 x 10 ⁻⁵	39	
etokimab (AnaptysBio)	9.4 x 10 ⁵	1.2 x 10 ⁻⁴	112	2. 9x
itepekimab (Regeneron)	7.6 x 10 ⁵	1.6 x 10 ⁻⁴	215	5.5x
(

zurabio